p-group, metabelian, nilpotent (class 2), monomial
Aliases: C32⋊C9, C3.1He3, C33.1C3, C32.6C32, C3.13- 1+2, (C3×C9)⋊1C3, C3.1(C3×C9), SmallGroup(81,3)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C32⋊C9
G = < a,b,c | a3=b3=c9=1, ab=ba, cac-1=ab-1, bc=cb >
(2 11 21)(3 22 12)(5 14 24)(6 25 15)(8 17 27)(9 19 18)
(1 20 10)(2 21 11)(3 22 12)(4 23 13)(5 24 14)(6 25 15)(7 26 16)(8 27 17)(9 19 18)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (2,11,21)(3,22,12)(5,14,24)(6,25,15)(8,17,27)(9,19,18), (1,20,10)(2,21,11)(3,22,12)(4,23,13)(5,24,14)(6,25,15)(7,26,16)(8,27,17)(9,19,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)>;
G:=Group( (2,11,21)(3,22,12)(5,14,24)(6,25,15)(8,17,27)(9,19,18), (1,20,10)(2,21,11)(3,22,12)(4,23,13)(5,24,14)(6,25,15)(7,26,16)(8,27,17)(9,19,18), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(2,11,21),(3,22,12),(5,14,24),(6,25,15),(8,17,27),(9,19,18)], [(1,20,10),(2,21,11),(3,22,12),(4,23,13),(5,24,14),(6,25,15),(7,26,16),(8,27,17),(9,19,18)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,17);
C32⋊C9 is a maximal subgroup of
C32⋊C18 C32⋊D9 C32⋊2D9 C32.24He3 C33.C32 C33.3C32 C32.27He3 C32.28He3 C32.29He3 C33.7C32 C33⋊C9 C32.19He3 C32.20He3 He3⋊C9 3- 1+2⋊C9 C92⋊3C3 C9×He3 C9×3- 1+2 C34.C3 C9⋊He3 C32.23C33 C9⋊3- 1+2 C33.31C32 C92⋊7C3 C92⋊4C3 C92⋊5C3 C92⋊8C3 C62.16C32 C62⋊C9
C32⋊C9 is a maximal quotient of
C3.C92 C32⋊C27 C33⋊C9 C32.19He3 C32.20He3 C9.4He3 He3⋊C9 3- 1+2⋊C9 C9.5He3 C9.6He3 C62.16C32 C62⋊C9
33 conjugacy classes
class | 1 | 3A | ··· | 3H | 3I | ··· | 3N | 9A | ··· | 9R |
order | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | |||||
image | C1 | C3 | C3 | C9 | He3 | 3- 1+2 |
kernel | C32⋊C9 | C3×C9 | C33 | C32 | C3 | C3 |
# reps | 1 | 6 | 2 | 18 | 2 | 4 |
Matrix representation of C32⋊C9 ►in GL4(𝔽19) generated by
7 | 0 | 0 | 0 |
0 | 7 | 0 | 0 |
0 | 0 | 11 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 7 | 0 | 0 |
0 | 0 | 7 | 0 |
0 | 0 | 0 | 7 |
17 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 7 | 0 | 0 |
G:=sub<GL(4,GF(19))| [7,0,0,0,0,7,0,0,0,0,11,0,0,0,0,1],[1,0,0,0,0,7,0,0,0,0,7,0,0,0,0,7],[17,0,0,0,0,0,0,7,0,1,0,0,0,0,1,0] >;
C32⋊C9 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_9
% in TeX
G:=Group("C3^2:C9");
// GroupNames label
G:=SmallGroup(81,3);
// by ID
G=gap.SmallGroup(81,3);
# by ID
G:=PCGroup([4,-3,3,-3,3,108,97]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^9=1,a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b>;
// generators/relations
Export